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Introduction: Inverse scattering problem

Reconstruct shape of scatterer(s)
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Introduction: Inverse scattering problem

Problem definition: Given

e the measured signal u,, on I'y,

e the forward model a(2; w,u) = £(Q;w) Yw,
e the operator F (2, u(?)) = ugp on I,

find the domain €2 such that “"F(Q, u(Q)) = up."

Remarks:

e () is the domain where the model is valid.

o a(Qw,u) = £(Q;w) Yw describes the interaction between the incident
wave and the medium.



Introduction: Inverse scattering problem

Forward problem: Given u;,. = exp(ikx - d), find u = us 4 Uiy such that

—Vu—-k*u=0 in R?

Vu-n=0 on the scatterer(s) surface,

r—00 or

lim r'/? (aus — iku8> =0 Sommerfeld condition.

Equivalent weak form: Find u such that

a($2;w,u) = £(;w) Vw.



Introduction: Inverse scattering problem

Solution methods

e Backpropagation algorithm (Devaney, 1982).

+ Fast.
— Based on the Born or Rytov approximations.

e Nonlinear methods (Chew and Wang, 1990; Kleinman and van den Berg,
1992; Natterer and Wiibbeling, 1995).

+ Avoid Born or Rytov approximations.
— Slow: methods are iterative in nature.

Goal: Construct an efficient algorithm that avoids these approximations.

Propose two algorithms:

1. Based on the concept of an “optimal shape” for the inverse problem.

2. Improved algorithm based on the “optimal topology” for the inverse
problem.



First method: Shape optimization

Iterative method: Find ) that minimizes

1
7(2) = J(2,u) =5 Hu—um\|2df
I's

subject to the constraint

a($2;w,u) =L0(Q2;w) Yw.

e Optimization problem with €} as the design variable.

e Use gradient-based algorithms to solve it.

Need to address the following issues:

1. Differentiation with respect to €2 (shape differentiation).

2. How to calculate derivatives in the presence of constraints given by
variational equations?



Shape differentiation

Derivative of j(€2) in the V'-direction

¢€
TN

Given the mapping

de: Q CR? — Q. C R?
de(x) =2+ eV (x) Vo € Q,

the shape derivative is



Differentiation in the presence of constraints

We want to calculate p

Dj(S) - — 5 Qeaa
J(Q) -V = —J (e, ue)

e=0

where u,. satisfies
a(Qe;w,ue) =0(Qe;w)  Vw.

Want to avoid computing u.. For that, introduce the Lagrangian

L0, ue, \) = J(Q.,u.) + Re (a(Qg; A us) — £(Q. A)).

So
L uc, A) = J(Qeyue) VA
As a consequence,

D)V = LI u)

d
— Skw eyA
- L(Q, ue, M)

e=0 d€

e=0

Seems we did not get much, but...



Differentiation in the presence of constraints

Differentiating the Lagrangian with respect to ¢ gives

d
d_gﬁ(ﬂe’i) Ug, )\) p— DlJ(Qe’;‘) ug) —|— Re (DlCL(Qs; )\7 us) . V _ Dle(ﬂgj )\) . V)

+ Re (a(Qe; A, 1)) + Do J(Qe, ue) - 1.

Select )\ that solves the adjoint equation

Re(a(Qe; A\, w)) + Do J(Qe,us) - w =0 Vuw.

d
D' Q ’ — 5 Qea €9
Jj(Q)-V dgﬁ( Ue, \)

e=0
—  D1J(Q,u) + Re (Dla(ﬂ; \u) -V — Di(Q, ) - V)
= G(Qu,\ V).



Differentiation in the presence of constraints

Summary. To compute Dj(Q2) -V

e Solve the forward problem: Find u such that

a($; w,u) =4l(w) Yw.

e Solve the adjoint problem: Find A such that

a(Q;w, \*) = —(w, (u — up)")r, Yw.

e Compute the shape derivative

Dj(Q) -V = G(Q,u,\, V).



Reconstructions using shape optimization
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Search for an improved method

Criticisms to the previous method

e A-priori information (number of scatterers) is needed.
e Robustness problems.

e Method is iterative.



Search for an improved method

J(Q) J(€2)

What if we could calculate the scalar field Dy (x) such that

J(§2e) = J(Q) + Dr(x) f(€) + o(f(€))

Dr(x) can be used as an indicator for the position (and shape) of scatterers
in the domain 2.



Search for an improved method

Topological Derivative [Sokolowski, 1999; Masmoudi, 1998]:

Priw) =g ==

where 2, = Q\ Be(x), f(e) is a negative function that decreases
monotonically and f(e) — 0 ase — 0.




Search for an improved method

Instead, we can define the topological derivative as follows

{ lim J(Qe—i—ée) T J(Qe)}
e—0 | 5e—0 f(E -+ 56) — f(G) .

@ €_|_5€

—> Betse

Qe—i—(Se

Di(x) = lim

J(Qe+56)



Search for an improved method

Define:
Q = {z,eR"|Jx e Q,x, =+ 7V},
vV = Vam V,, < 0 constant on 0B,
N 0 on 0.
Theorem:
Dr(x) = D%p(a:) = lim ! d J(Q,)
AR

for f(e) such that 0 < |Dp(x)| < cc.

Remark: (e) is the shape derivative!



Second method: Topological derivative

In our case

Dr(z) = Re [VX*(x) - Vu(z) — K*X*(z)u(z)] .

Both u and A\ can be calculated analytically!

u(x) = Upc(x) = exp(ikx - d)
Az(r,0)) = Y AnJy,(kr)exp(inf)

A, = f.(Fourier components of measured signature)

Method:

Plot Dr(x), € 2 and look for points where Dr(x) attains large values.



Reconstructions using topological derivative

Target




Reconstructions using topological derivative

Topological derivatives for njy, = ngp = 120.

k=6 k=12 Target



Reconstructions using topological derivative

Target




Topological derivatives for niy, = nqgp = 120.

k=2 k

I
w



Reconstructions using topological derivative

Targets
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Reconstructions using topological derivative

v = 200MHz Target



Reconstructions using topological derivative
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Reconstructions using topological derivative

v = 200MHz Target



Reconstructions using topological derivative

v = 200MHz Target



Conclusions and future work

Shape sensitivity analysis/topological derivative can be used as a tool to
solve inverse scattering problems.

Comparison with other approaches.

3D reconstructions.

Reconstruction of refractive index.

Seismic imaging.

Work with real data!



